

УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ UNIVERSITY OF BANJA LUKA

CHEMISTRY DEPARTMENT

PhD STUDIES

Course name	Selected Polymer Materials for Advanced Application				
Course code	Course status		emester	Hours of instruction	ECTS
DHEM23OPM	elective		II or IV	5+0	10
Teacher(s)	Prof. Milica Balaban, F	PhD		5.0	10
Prerequisite course(s) Entry requirements					
none / Course goals					
The aim of learning the subject is to recognize the importance of new and modified polymer materials of interest in the modern technological					
environment, the use of renewable resources in the synthesis of commercial polymer products, as well as to master advanced synthesis and					
characterization techniques.					
Learning outcomes					
The student recognizes and systematizes different types of advanced and modified polymers based on different criteria. The student predicts					
the mechanical and functional properties of a given polymer based on its structure. The student applies various methods of synthesis and					
modification to obtain polymers, copolymers, and mixtures and performs basic characterization, independently and in teamwork.					
Course content					
Depending on the topic of the doctoral dissertation and interest, the student can choose one of the selected topics:					
• Cross-linked polymers: Polyesters, unsaturated polyesters and alkyds, phenolic polymers: resol phenols, novolac phenols, aminoplastics,					
epoxy resins, polyurethanes, polysiloxanes, polysulphides. Chemical and physical networks. Intermolecular and intramolecular cross-linking.					
Monomer functionality (f). Networking density. Gelation and swelling index. The main chemical routes for the synthesis of polymer networks.					
Gradual polymerization. Vulcanization. Characterization of polymer networks and gels. Theory and mathematical modeling of networking.					
Properties of cross-linked polymers. Rheology and curing process of cross-linked polymers. Phase separation and two-phase morphology in					
thermoplastically modified cross-linked polymers.					
• Synthetic biodegradable polymers. Aliphatic polyesters (PGA, PLA and their copolymers, polybutylene succinate (PBS), polybutylene					
succinate adipate (PBSA), poly(vinyl alcohol) (PVOH), poly(vinyl acetate) (PVA), poly(ε-caprolactone) (PCL). Polyesters, polyamides,					
polyurethanes, polyanhydrides.					
• Biodegradable polymers from renewable sources. Polysaccharides, Polypeptides, Poly(lactic acid and poly(lactides) (PLA), Poly(glycolic acid					
(PGA). Derivatives and copolymers.					
• Factors affecting biodegradation - structure, morphology, molecular weight, radiation, and chemical treatments. Mechanism of					
biodegradation. Techniques for studying biodegradation. Rate of degradation. Mechanical properties of biodegradable polymers. Application					
of biodegradable polymers in medicine and agriculture, packaging.					
Polymers for energy applications in energy storage and conversion.					
Teaching methods					
Lectures, seminars, consultation, experimental work					
Books and other learning materials					
Odian, G. (2004). Principles of polymerization. John Wiley & Sons.					
Hernández-Ortiz, J. C., & Vivaldo-Lima, E. (2013). Crosslinking. Handbook of Polymer Synthesis, Characterization, and Processing, 187–204. doi: 10.1002/9781118480793.ch9.					
Biodegradable Polymers: Recent Developments and New Perspectives, Ed. Geraldine Rohman, 05/ 2017 : IAPC Publishing ISBN: 978-953-					
56942-5-0					
Ganachari, S.V. (2019). Polymers for Energy Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials.					
Springer, Cham. <u>https://doi.org/10.1007/978-3-319-68255-6</u> 194. Review and original papers from databases.					
Course activities and grading method					
Individual project, Final					
Presentation of project		40	Final exam	60	
Additional course note	<pre></pre>	ν. V	rinai exam	00	
	ч 				
Name of the teacher who prepared this form			Milica Balabar		
Name of the teacher who prepared this form					

