

УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ UNIVERSITY OF BANJA LUKA

ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

FACULTY OF NATURAL SCIENCES AND MATHEMATICS

CHEMISTRY DEPARTMENT FIRST CYCLE OF STUDY

FIRST CYCLE OF STUDY Chemistry/Chemistry Education

Course name	Computational Chemistry						
Course code	Course s	status	Semeste	r Hours of	instruction	ECTS	
1C16HOS1108	elect	ive	VI	3	+0	4	
Teacher(s)	Assis. Prof. Danijela Barić PhD						
Prerequisite course(s)				Entry requrements			
1				/			
Course goals							
The aim of the course Computational Chemistry is to acquire basic knowledge and skills for the application of							
computer methods in chemistry, which represent the most modern approach in the design of complex organic							
molecules of specific stereochemistry and predetermined properties, and study and prediction of chemical reaction							
mechanisms.							
Learning outcomes							
Students will be introduced to the principles and methods of computer chemistry, the basics of molecular modeling							
important for the design of complex organic molecules, computer study of the mechanism of organic reactions and							
molecule design based on the application of quantum chemical methods.							
Course content							
Introduction to basic tools needed for chemistry in silico, basic concepts and definitions in computational chemistry,							
basics of molecular mechanics, minimization method, basics of molecular orbital theory (MO), ab initio MO theory,							
sets of basic functions, self-consistent field method (SCF) and Hartree -Fock theory, potential energy plane, geometry							
optimization, transition state localization, electronic correlation problem and post-HF methods, Møller-Plesset							
pertubation (MP) theory, solvent description, functional density theory (DFT) and application of DFT methods.							
Examples from the teaching material for active student participation.							
Teaching methods							
Lectures and calculation exercises							
Books and other learning materials							
Christopher J. Cremer, Essentials of Computational Chemistry: Theories and Models, 2nd Edition, John Wiley &							
Sons, Chichester, 2004.							
Andrew R. Leach, Molecular Modelling: Principles and Applications, 2nd Edition, Pearson Education Ltd, 2001. Frank							
Jensen, Introduction to Computational Chemistry, 2nd Edition, John Wiley & Sons, Chichester, 2006.							
Teacher's internal script*							
Course activities and grading method							
The results of the tests are entered in the final grade only if they exceed 50% of the planned points for a given form							
of test during the semester.							
Seminar		40	Final ex	am		60	
Additional course notes							
/							
Name of the teacher who prepared this form				Danijela Barić			

