

УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ UNIVERSITY OF BANJA LUKA

ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

FACULTY OF NATURAL SCIENCES AND MATHEMATICS

CHEMISTRY DEPARTMENT

FIRST CYCLE OF STUDY Chemistry/Chemistry Education

Course name	Physical Chemistry 3				
Course code	Course status	Semeste	r Hours of inst	ruction	ECTS
1C16HOS1110	required	VI	2+2		5
Teacher(s)	Prof. Dijana Jelić, PhD				
Prerequisite course(s)		Entry requrements			
Physical Chemistry 1, Physical Chemistry 2			passed		
Course goals					
The aim of the course Physical Chemistry 3 is to teach the students with about events at the phase boundary and the					
study of surface phenomena. Then the study of colloidal disperse systems, their structure and physicochemical					
properties, as well as introduction to the basics of radiochemistry such as radioactive decay, ionizing and non-					
ionizing radiation, fission.					
Learning outcomes					
The student is able to independently understand events at the phase boundary and surface phenomena, as well as					
to apply adsorption isotherms to boundary phenomena. To understand and determine the structure of a colloidal					
particle and its behavior. The student knows the basic concepts of radiochemistry, to explain radioactive decays, to					
understand the units used in radiological examinations.					
Course content					
Adsorption. Adsorption equilibria. Adsorption isotherms. Fundamentals of colloid chemistry: colloidal systems,					
structure, structure of colloidal particles, kinetic, optical and electrical properties, stability and coagulation of					
colloids. Basics of radiochemistry: natural and artificial activity, ionizing radiation, radiation doses.					
Experimental part					
Construction of absorption isotherms for different adsorbate / adsorbent systems.					
Teaching methods					
Lectures, computational exercises, laboratory exercises, oral exam					
Books and other learning materials					
N. Čegar, J. Penavin-Škundrić, B. Škundrić, Osnovi hemijske termodinamike, Banjaluka, 2006					
I. D. Holclajtner Antunović, Opšti kurs fizičke hemije, Zavod za udžbenike i nastavna sredstva, Beograd, 2000					
D. Malešev, Odabrana poglavlja fizičke hemije, Farmaceutski fakultet, Beograd, 2003					
P. W. Atkins, Physical Chemistry, Oxford, University Press,					
M. Juranji, Fizička hemija, Zbirka rješenih zadataka, Univerzitet u Novom Sadu, Edicija Univerzitetski udžbenik, Novi Sad 1998					
Course activities and grading method					
Laboratory exercises are a condition for taking the exam. Students take two tests (theory and calculations – 51%). The first test is in the field of Adsorption. The second test is from Colloid Chemistry. Oral exam.					
-	10	Test - 1		1	15
Laboratory exercises Test - calculations			•		
rest - calculations	15	Final e	(dill		60
Additional course notes					
Name of the teacher who pr	renared this form	Drof	Prof. dr Dijana Jelić, PhD		
Name of the teacher who pr	epareu uns iorni	PIUL			

